Rari Sex Anemalz Vidieo
Frequent turnovers driven by haploid selection may help to explain the relative rarity of heteromorphic sex chromosomes in plants. If haploid selection is strong, but selective differences between male and female diploids are weak, we specifically predict that trans-GSD transitions are favoured more strongly than cis-GSD transitions, with transitions to ESD intermediate (e.g., with , we have ; Eq 3). Among the relatively few dioecious clades in which multiple species have well-characterised sex chromosomes [6], trans-GSD transitions have been inferred in Silene otites [15] and in Salicaceae [16, 17]. Assuming that transitions from dioecy to hermaphroditism (equal parental investment in male and female gametes) are favoured in a similar manner to the ESD examined here (equal probability of zygotes developing as males or females), our results suggest that competition among haploid pollen could drive transitions between dioecy and hermaphroditism, which are frequent in plants [82, 83]. To further examine this link, future theory could also include inbreeding, which is an important consideration during transitions between dioecy and hermaphroditism [84]. Future empirical studies could look for evidence of haploid selection acting on former sex chromosomes in hermaphroditic species (e.g., a study such as [81] on ancestral, rather than derived, sex chromosomes).
rari sex anemalz vidieo
Project MUSE promotes the creation and dissemination of essential humanities and social science resources through collaboration with libraries, publishers, and scholars worldwide. Forged from a partnership between a university press and a library, Project MUSE is a trusted part of the academic and scholarly community it serves.